

Toward the Use of Phase Change Materials (PCM) in Concrete Pavements: Evaluation of Thermal Properties of PCM

Prepared by: Yaghoob Farnam yfarnam@purdue.edu, Purdue University

L. Liston, M. Krafcik, Y. Farnam, B. Tao, K. Erk, and J. Weiss

Introduction

Introduction

Objective

Potential PCMs

Experimental Program

LT-DSC

PCM Absorption

LGCC

Summary

- To increase the safety of airfield pavements, snow & ice should be removed during winter.
- Common practices include the use of snowplowing or the use of deicing chemicals.
- These methods are costly, have environmental

impact, can damage the pavement, & can be labor intensive.

Is There Any Alternative to Remove Snow and Ice?

Introduction

Objective

Potential PCMs

Experimental Program

LT-DSC

PCM Absorption

LGCC

Summary

Main objective: To examine the role that PCM may have in storing heat in pavements to melt snow and ice at airports.

- PCMs can store thermal energy from the environment.
- Stored energy can be released and melt ice and snow.
- Improves anti-icing practices in airfield pavements.
- Increases the safety of airport pavement.

Potential PCMs for Airport Pavement Application

Introduction

Objective

Potential PCMs

Experimental Program

LT-DSC

PCM Absorption

LGCC

Summary

Desired thermal properties:

- ✓ Phase transition temperature near 3-6° C
- ✓ High latent heat of fusion
- ✓ High specific heat (heat capacity)
- ✓ High thermal conductivity
- Desired physical properties:
 - ✓ High density
 - ✓ Small volume change between phases
 - ✓ Low vapor pressure
- Desired chemical properties are stability, compatibility with concrete, non-toxic, and non-flammable.
- It is economic/commercially viable

Experimental Program

Introduction

Objective

Potential PCMs

Experimental Program

LT-DSC

PCM Absorption

LGCC

- 1. First, PCM thermal behavior was determined using low temperature differential scanning calorimetry (LT-DSC).
- 2. Second, ways that PCM can be incorporated in airport pavement were evaluated.
- 3. Potential PCMs that can be used in airport pavement were chosen.
- 4. Finally, concrete samples were prepared using those PCMs and tested in longitudinal guarded calorimeter (LGCC) to determine the concrete thermal behavior.

Part I: Low-Temperature Differential Scanning Calorimeter (LT-DSC)

Introduction

Objective

Potential PCMs

Experimental Program

LT-DSC

PCM Absorption

LGCC

Summary

- This is a quick test to assess optimal PCMs and to evaluate the thermal properties of PCMs.
- Many PCMs were tested:
 - Soybean oil
 - Canola oil
 - Corn oil
 - Coconut oil
 - Paraffin oil
 - Fatty acids methyl ester

Compositions of Methyl Ester Samples

LT-DSC - Results

Introduction

Objective

Potential PCMs

Experimental Program

LT-DSC

PCM Absorption

LGCC

- By changing the composition of PCMs, their freezing temperature and enthalpy of fusion changes.
- We are able to change PCM freezing temperature for different climate conditions.

Candidate PCMs

Introduction

Objective

Potential PCMs

Experimental Program

LT-DSC

PCM Absorption

LGCC

- Among PCMs tested in this study, <u>paraffin oil</u> and <u>methyl laurate</u> have a desired thermal behavior for concrete pavement application.
- They have a freezing temperature near 3-6 °C and high latent heat of fusion

Part II: Ways to Incorporate PCM into Concrete Pavements (Use of LWA)

Introduction

Objective

Potential PCMs

Experimental Program

LT-DSC

PCM Absorption

LGCC

- Lightweight aggregate (LWA) can be used to incorporate PCM in concrete pavement.
- More PCM penetrates in LWA, more heat can be produced.
- LWA sorted by sieving and PCM absorption was tested.
- Two common types of LWAs were used:
 - Buildex and Haydite

Part II: Absorption of PCM into LWA

Introduction

Objective

Potential **PCMs**

Experimental **Program**

LT-DSC

PCM Absorption

LGCC

Summary

 PCM absorption into LWA was evaluated in two conditions:

- Ambient Conditions
 - 24 hours soak
 - LWA towel dried for saturated surface dried conditions
- ✓ Vacuum Conditions
 - Evacuated air for 45 minutes
 - Cover LWA with methyl ester sample
 - Stop vacuum
 - Methyl esters penetrate pores for 30 min

	Sample	Retained Sieve #	Vacuum Water Absorption
	Buildex	-	32%
	Graded Buildex	8	35%
		16	33%
		30	31%
		50	29%
		Pan	26%
	Haydite	=	23%
_ _	Graded Haydite	8	29%
		16	26%
		30	19%
		50	17%
		Pan	13%

Part II: Results / Important Findings

Introduction

Objective

Potential PCMs

Experimental Program

LT-DSC

PCM Absorption

LGCC

- As expected, vacuum absorption is higher.
- LWA#1 (Buildex) showed a better PCM absorption.

Part III: Make a Concrete with PCM

Introduction

Objective

Potential PCMs

Experimental Program

LT-DSC

PCM Absorption

LGCC

Summary

- Lightweight aggregates (LWA) were soaked in PCM and then were used to make concrete.
- The same procedure can be used in the field to make concrete pavement using conventional paving operations.

LWA

Concrete with LWA + Paraffin Oil

Next step: Longitudinal Guarded Comparative Calorimeter (LGCC)

Introduction

Objective

Potential PCMs

Experimental Program

LT-DSC

PCM Absorption

LGCC

- Acoustic Emission Longitudinal Guarded Comparative Calorimeter (AE-LGCC).
- LGCC monitors heat flow and detects phase changes.
- AE can monitor damage and cracking in samples due to FT.
- Calculation of heat transfer based on meter bar:

$$\lambda_{PC} = -0.0061(T) + 4.2013$$
 $-50 \, ^{\circ}C < T < 30 \, ^{\circ}C$
 $q_{T} = \lambda_{PC}.\frac{T_{6} - T_{7}}{d_{PC}}$
 $q_{B} = \lambda_{PC}.\frac{T_{2} - T_{3}}{d_{PC}}$
 $\Delta Q_{Sample} = (q_{B} - q_{T}).A$

AE-LGCC with an operating range of -40 °C to +60 °C

LGCC – Preliminary Results (Paraffin Oil)

Introduction

Objective

Potential PCMs

Experimental Program

LT-DSC

PCM Absorption

LGCC

Summary

- Concrete made by LWA and PCM showed heat releasing during PCM freezing.
- This can be used to melt ice and snow.
- Maximum amount of PCM used to make concrete.
- ✓ Released energy:
 - ~ 130 kJ/kg
- ✓ Heat release time:
 - ~ 5hr
- ✓ Freezing Temperature:

~ +4 °C to -3 °C

Summary

Introduction

Objective

Potential PCMs

Experimental Program

LT-DSC

PCM Absorption

LGCC

- This work discussed the feasibility of using PCM in concrete pavement and its capability to melt ice and snow.
- Thermal behavior of PCMs were monitored and candidate PCMs were chosen.
- Through using LWA, PCMs were incorporated in concrete.
- PCM concrete showed promising behavior in releasing heat under thermal cycling.
- This heat release can be used to melt ice and snow in the aviation infrastructure.

Next Steps in our Project

Introduction

Objective

Potential PCMs

Experimental Program

LT-DSC

PCM Absorption

LGCC

- More samples will be tested in LGCC.
- Full scale PCM concrete slabs will be prepared and will be tested in our environmental chamber at Purdue University.
- A finite difference model (FDM) is being developed to simulate PCM action in concrete pavement.
- Using FDM and historical climatic data a proper PCM can be selected for a specific region.
- Evaluate the mechanical behavior.